3 research outputs found

    Deep Learning for Relevance Filtering in Syndromic Surveillance: A Case Study in Asthma/Difficulty Breathing

    Get PDF
    In this paper, we investigate deep learning methods that may extract some word context for Twitter mining for syndromic surveillance. Most of the work on syndromic surveillance has been done on the flu or Influenza- Like Illnesses (ILIs). For this reason, we decided to look at a different but equally important syndrome, asthma/difficulty breathing, as this is quite topical given global concerns about the impact of air pollution. We also compare deep learning algorithms for the purpose of filtering Tweets relevant to our syndrome of interest, asthma/difficulty breathing. We make our comparisons using different variants of the F-measure as our evaluation metric because they allow us to emphasise recall over precision, which is important in the context of syndromic surveillance so that we do not lose relevant Tweets in the classification. We then apply our relevance filtering systems based on deep learning algorithms, to the task of syndromic surveillance and compare the results with real-world syndromic surveillance data provided by Public Health England (PHE).We find that the RNN performs best at relevance filtering but can also be slower than other architectures which is important for consideration in real-time application. We also found that the correlation between Twitter and the real-world asthma syndromic surveillance data was positive and improved with the use of the deep- learning-powered relevance filtering. Finally, the deep learning methods enabled us to gather context and word similarity information which we can use to fine tune the vocabulary we employ to extract relevant Tweets in the first place

    Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance

    Get PDF
    We investigate the use of Twitter data to deliver signals for syndromic surveillance in order to assess its ability to augment existing syndromic surveillance efforts and give a better understanding of symptomatic people who do not seek healthcare advice directly. We focus on a specific syndrome—asthma/difficulty breathing. We outline data collection using the Twitter streaming API as well as analysis and pre-processing of the collected data. Even with keyword-based data collection, many of the tweets collected are not be relevant because they represent chatter, or talk of awareness instead of an individual suffering a particular condition. In light of this, we set out to identify relevant tweets to collect a strong and reliable signal. For this, we investigate text classification techniques, and in particular we focus on semi-supervised classification techniques since they enable us to use more of the Twitter data collected while only doing very minimal labelling. In this paper, we propose a semi-supervised approach to symptomatic tweet classification and relevance filtering. We also propose alternative techniques to popular deep learning approaches. Additionally, we highlight the use of emojis and other special features capturing the tweet’s tone to improve the classification performance. Our results show that negative emojis and those that denote laughter provide the best classification performance in conjunction with a simple word-level n-gram approach. We obtain good performance in classifying symptomatic tweets with both supervised and semi-supervised algorithms and found that the proposed semi-supervised algorithms preserve more of the relevant tweets and may be advantageous in the context of a weak signal. Finally, we found some correlation (r = 0.414, p = 0.0004) between the Twitter signal generated with the semi-supervised system and data from consultations for related health conditions

    Legal Judgement Prediction for UK Courts

    Get PDF
    Legal Judgement Prediction (LJP) is the task of automatically predicting the outcome of a court case given only the case document. During the last five years researchers have successfully attempted this task for the supreme courts of three jurisdictions: the European Union, France, and China. Motivation includes the many real world applications including: a prediction system that can be used at the judgement drafting stage, and the identification of the most important words and phrases within a judgement. The aim of our research was to build, for the first time, an LJP model for UK court cases. This required the creation of a labelled data set of UK court judgements and the subsequent application of machine learning models. We evaluated different feature representations and different algorithms. Our best performing model achieved: 69.05% accuracy and 69.02 F1 score. We demonstrate that LJP is a promising area of further research for UK courts by achieving high model performance and the ability to easily extract useful features
    corecore